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Defect Corrections for Multigrid Solutions 
of the Dirichlet Problem in General Domains 

By Winfried Auzinger* 

Abstract. Recently, the technique of defect correction for the refinement of discrete solutions 
to elliptic boundary value problems has gained new acceptance in connection with the 
multigrid approach. In the present paper we give an analysis of a specific application, namely 
to finite-difference analogues of the Dirichlet problem for Helmholtz's equation, emphasizing 
the case of nonrectangular domains. A quantitative convergence proof is presented for a class 
of convex polygonal domains. 

1. Introduction. The purpose of this paper is to study the behavior of a defect 
correction method for the linear elliptic boundary value problem 

-Au(x, y) + c(x, y)u(x, y) = f(x, y), (x, y) e Q, 

u(x, y) = g(X, y), (x, y) E aua, 
in a general domain Q c W2. The method and, in particular, its combination with the 
multigrid approach, has been discussed by Auzinger and Stetter [4] and Hackbusch 
[101. (We also refer to the work of Frank, Hertling, and Monnet [7].) 

Defect correction is a way to obtain, in an iterative or semi-iterative fashion, 
solutions to complex problems by means of solving related, simpler problems. In the 
present application, the "complex problem" is a high-order discretization, whereas 
the "simpler problem" is a low-order scheme which is solved by standard multigrid. 
It is our aim to show, in a concrete nontrivial situation, that this is a reasonable way 
to get a high-order solution. More precisely, we prove that contraction rates can be 
obtained which yield the usual multigrid efficiency. Our approach has the advantage 
that standard multignd software can be used for the solution phase in a black box 
manner. The high-order scheme is only involved in an outer iteration. Thus, high 
accuracy is introduced in such a way as to be (theoretically and computationally) 
clearly separated from the inversion process. 

After some general remarks in Section 2, we present in Section 3 an account of the 
model problem analysis given in Auzinger [1]. In Section 4, which is the heart of the 
paper, we derive explicit bounds for the contraction number of the defect correction 
iteration for a class of convex polygonal domains. That section includes a quantita- 
tive H2-regularity estimate for the discrete Poisson equation. Our analysis does not 
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472 WINFRIED AUZINGER 

depend on asymptotic error expansions. Some remarks on general domains can be 
found in Section 5. 

Throughout we have adopted the convention of "generic constants" C, C1,.... 
These are always independent of the discretization level. 

2. Basic Properties. Let 

(2.1) Lu = f 
denote a linear elliptic boundary value problem of second order (e.g., (1.1)) and 

(2.2) Lhuh = fh 

its discretization on a grid with mesh size h. (2.2) is assumed to be stable in some 
norm 11 11 and will be referred to as the "basic discretization" of (2.1). In our 
application, (2.2) is a 2nd-order method. 

Let, in addition, 

(2.3) LhUh = fh 

be a discretization of higher order. Within our defect correction approach, (2.3) will 
not be inverted but evaluated: Given a discrete approximation u'), its defect with 
respect to (2.3) defines a corrected version of (2.2) in the following way: 

(2.4) L i? ) = (i) ) 

This yields an iteration procedure possessing any solution of (2.3) as a fixed point. 
Within this context, (2.3) will be referred to as the "target discretization" of (2.1). 
(See Stetter [12] for the general principle of defect correction.) 

With the notation 

(2.5) AL := L LI 

the iteration (2.4) reads 

(2.4') u+:= Lh'ALhU + Lh fh4 

The general structure of our analysis of the defect correction iteration (2.4) can be 
described as follows: Let u* be the restriction of the true solution u* of (2.1) to the 
grid with mesh size h. For the error function 

eh ) = UhM)- U^* 

we obtain the "error iteration" equivalent to (2.4): 

(2.6) ei+l) := L-lALLe(i) - Lh'(L'hu - fh- ) 

Thus, we will have to investigate 
(i) the contraction behavior of L-j1LL, 

(ii) the role of the inhomogeneous term Lh-(L'hu* - fh'). 

We have not presupposed stability of (2.3). In fact, for the purpose of defect 
correction, unstable target discretizations are usually admitted. It must, however, be 
pointed out that the "global" contractivity of the defect correction operator L-hALh 
and the stability of (2.3) are directly interrelated: LhkALh cannot be contractive, 
independent of h, if L'h is unstable or even fails to be invertible. (See, however, our 
remarks at the end of this section. See also Section 5 for further comments on 
unstable target discretizations.) 
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PROPOSITION 2.1. Let Lh be stable and L-ALh have a contraction number 
h-LALhII < k < 1 independent of h. Then L'b is invertible and stable: 

(2.7) || L5j l - 1 k I L_1 l. 

For the error e := u - u * (i.e., the fixed point of (2.6)) we obtain 

(2.8) lieI | i kI|La(Lhu - fh ) 11 

Proof. Since IIIh - LA'L'j 
< 1, Lh7L'b is invertible, and so is L'. Moreover, 

IIL1| < || La 1| + || (RIb-LA' ) L |-1 || + k| L'-1II| 
from which we infer (2.7). A similar argument establishes (2.8) El 

For an extension of this simple result, see Proposition 2.2 below. 
The convergence behavior of the defect correction iteration (2.4) is essentially 

retained if Lb is only approximately inverted: Assume 

(2.9) IlIh - KhLhll < 1 < 1, 

independent of h. (This can be expected if Kh represents a suitable multigrid cycle.) 
Then the iteration 

(2.10) U4i1) := (Ih - KhLh)uh) + Kfh 

has a contraction number < k < 1 if 

(2.11) k:= k + I + kl < 1 

(k from Proposition 2.1; cf. Auzinger and Stetter [4]). 
Since, in our situation, the actual convergence rate depends crucially on the 

smoothness of the "algebraic error" (i.e., the error with respect to the fixed point), 
we shall also consider the following modification of (2.4) (or (2.10)): 

(2.12) UM() := (Ih - 
ThLh)Uhi) 

+ Tbb, U+):= Lh1ALbi) + Lh'f, 

(or Kb instead of L-1, respectively). Here, the defect correction is "preconditioned" 
by a smoothing sweep relative to the basic discretization. We expect that a suitable 
multigrid smoother Th will improve the convergence considerably. 

On the other hand, a fixed point ub of (2.12) does no longer satisfy (2.3). In the 
following we give a representation of Uh. (See also Hackbusch [10] for a related 
result.) 

PROPOSITION 2.2. Fixed-point shift. Let Mh := L-'ALh(Ih - TbLb), and assume 
iMb < m < 1, m independent of h. Then there is a unique fixed point Ub of (2.12) 
satisfying 

(2.13) Luh =!fh 

where Lh and fh are defined by 

(2.14) L := L' + ALbTbLb, fb:= f A + ALbTbIb. 

Lh is invertible and stable with 

(2.15) ILa || < 1 < m 11 
1 



474 WINFRIED AUZINGER 

The error eh Uh - UhrS 

(2.16) Ih = - Mh) Lhh[(Lhuh -fh) ? LhTh(LhU* -fh)]. 

Proof. Combining the steps in (2.12), we obtain the fixed-point equation 

Uh - Mhih + Lh [f4 + ALhThfh], 

hence, Lh(Ih -M)u fh. Moreover, Lh(Ih - Mh) = Lh as defined in (2.14), 
since 

Mh = (Ih - Lh Lh)(Ih - ThL) 

=Ih - Lh (Lh + ALhThLh) = Ih - Lh Lh. 

Together with IIMhII < m < 1, this implies (2.15). The error eh is given by 

eh = -L(Lhuh fhh) h 

which is easily seen to be equivalent to (2.16). El 

Proposition 2.2 shows that Lh is stable under weaker assumptions than IL'A LhHl 
< 1. Hence it is possible that Lh is stable even if L' is not; L may be considered a 

<1. even ~~~~hh hmabecnirda 
"stabilization" of L'. Although this observation has no immediate consequence in 
our application (cf. Sections 3 and 4), it may be useful in other cases. 

Naturally, the modification (2.12) will only make sense if, within (2.16), the 
"perturbation" involving the low-order truncation error LhUh - fh does not destroy 
the accuracy controlled by L-1(L'u* - fh). We shall return to this question in the 
sections which follow. 

3. Model Problem Analysis. In this section we consider Helmholtz's equation in 
the unit square. This example has already been discussed in Auzinger and Stetter [4] 
and, in more detail, in Auzinger [1]. Let S = (0, 1) x (0, 1), and let Helmholtz's 
equation (1.1) be given. The quoted results apply to the case of c const > 0. (See 
[1] for the handling of variable c(x, y) by partial summation.) On a uniform grid 
with mesh spacing h = 2-m, m E N, the basic discretization LhUh = fh is defined 
by the usual five-point stencil 

(3.1) -1 4 -1 

and by straightforward point evaluation for cu and f. LhUh = fh is a stable, 
2nd-order discretization. 

Let the target discretization L'Uh fh' be given by the well-known stable, 
4th-order "Mehrschrittverfahren". Then, ALh = Lh - L'h is given by 

(3.2) ALhUh 6h -2 4 2 uh + 2 -1 4 -1 cuhI 

Now let 11 * 112 denote the (properly scaled) Euclidean norm as well as its associated 
operator norm. With respect to 11 2, L 'ALh has a contraction number indepen- 
dent of h: 

PROPOSITION 3.1. 

(3.3) IILh'ALh-1L 
I 
3+ O(ch2) < 2 

Proof. Given in [1]. [i 



DEFECT CORRECTIONS FOR MULTIGRID SOLUTIONS 475 

Here and in the sequel, 0(ch2) means {(c) * 0(h2), where A(c) = 0(c) for small 
c, but uniformly bounded for arbitrary c. In (3.3), the bound 2 is valid independent 
of h and c. The analysis of the modified iteration (2.12) is based on the following 
estimate. 

LEMMA 3.2. 

(3.4) || Lh AL Lh- 11 < (1 + O(ch2)) < 

Proof. Given in [1]. o 

Assume that, in (2.12), the smoothing step consists in v > 1 applications of an 
appropriate relaxation procedure, say 

Ih - ThLh = Shv 

and assume further that Sh has the smoothing property (defined in Hackbusch [9]) 
for 11 112 and a = 2: 

(3.5) ||LhSh I12 -<- C(P)h 

with C(v) -- 0 as v --> oo. 

PROPOSITION 3.3. Let Sh satisfy (3.5). Then, 

(3.6) IL-1ALLSh 12 < 24C(v)(i + 0(ch )) 6 

Proof. Use the splitting Lh1ALhSv = Lh1ALhLh'LhSZ and apply Lemma 3.2. o 
The smoothing property (3.5) has been proved in [9] for damped Jacobi and 

"red-black" Gauss/Seidel smoothers with 

(3.7a) C(v) < 6_+ 1 (1 + O(Ch2)), 

(3.7b) C(v) < 8 (1 + O(Ch2)), 

respectively. 
The following table shows the resulting bounds for IIjL'LhShII2, v = 1, 2,..., in 

the case of Poisson's equation. 

v Jacobi Gauss/Seidel 

1 .083 .064 
2 .050 .032 
3 .036 .021 
4 .028 .016 

These numbers are comparable in size to typical multigrid convergence factors. 
We conclude this section by showing that the "fixed-point shift" (cf. Proposition 

2.2) is 0(h4). Hence, the smoother does not affect the order of accuracy. 

LEMMA 3.4. For Th = (Ih - Sv)L-', there exists C'(v) independent of h such that 
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This holds for both of the smoothing procedures considered. For Jacobi relaxation, 
C'(v) < C v; for Gauss/Seidel, C'(v) < C (2' - 1). 

Proof. See [2]. 0 

PROPOSITION 3.5. Let IIL-'AL hShII2 < m < 1. There exist constants C1, C2 inde- 
pendent of h such that the error eh of Proposition 2.2 satisfies 

(3.9) Ieh 112 < [ CCl'|Lhu* f|'12 + C2C'(V)h 2|Lhu -fh|kI. 

Thus, IehII2 = 0(h4). 

Proof. Use the representation (2.16), (3.3), (3.8) and the stability of Lh. ? 

4. Convergence Analysis for a Class of Convex Polygonal Domains. For simplicity, 
we shall from now on restrict our considerations to Poisson's equation; the results 
can be transformed to the general case (1.1). 

Let S2 c R2 be a bounded polygonal domain such that, for some sequence of 
uniform grids Sh C Q (with mesh size h), its boundary consists of horizontal, 
vertical or diagonal grid lines (see Figure 4.1). For this type of domains, explicit 
bounds are known for multigrid convergence rates; see Braess [5]. We are going to 
establish bounds for the contraction rate of the defect correction method. 

h 

FIGURE 4.1 
"Polygonal " domain 

By a02h we denote the intersection of a2 with the grid lines. Let sh := Sh + as2h. 

P = (X, y) E: Oh is called (interior or boundary) grid point, respectively. Uh: Ch -> R 
is called grid function; often we shall tacitly extend a grid function to the infinite 
grid by uh(P) := , P ( Qh. The linear space of grid functions is denoted by OTh* 

O&O is the subspace of functions vanishing on al2h. Since the Dirichlet boundary 
condition will always be trivially satisfied, any "error function" henceforth consid- 
ered is contained in O&O. 

Let 2h C Oh be the set of grid points P far enough away from the boundary such 
that the nine-point stencil (3.2) is well defined within Oh; let Fh:= 2h \ 2h. Define 
projection operators Rh, Bh L?1I - Oi? by 

(4.1a) Rhuh(p): {= h(P), E 

and 

(4.1b) Bh= Ih - Rh- 
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With respect to the discrete LO.-norm 11 Ilo, the following estimate holds for the 

basic discretization Lh (defined via (3.1)). 

PROPOSITION 4.1. 

(4.2) L-Bh II oo < h2. 

Proof. (4.2) is the reformulation of a "discrete Green's function estimate" in 

Bramble and Hubbard [6] (see also [1]). m 

Proposition 4.1 shows that the full order of consistency is not required near the 

boundary. 
The target discretization L'huh = f,1 can be defined by the "Mehrstellenoperator" 

for P E th; for P E Fh we use the basic five-point scheme (3.1). Thus, the order of 

consistency is 

f0(h 4), P h, 
(4.3) |(L'u* fh)(P) |I= (h) pEr 

AL = Lh -L'h iS given by (3.2) for P E h; it is 0 for P E 
rh. 

Let q/h be equipped 

with the scalar product 

(4.4) (Uhl Vh) := h2 E U u(p) Vh(p) 
PE=h 

Introducing discrete Sobolev norms, we shall write 

(4.5) IUhIH0:= IIUhII2 = (uh, Uh) 

On O&O, a Hl-norm can be defined by 

(4.6) |IUh IH1:= laXUh IH? +IayUhI H?I 

where ax, ay are the first (forward-) difference quotients. (The corresponding 

backward-difference quotients will be denoted by ax, ay.) The dual of H1 is 

(4.7) lUh lH-1:= SUp |(Uh, Vh) 

?Vh/t l V& h IH 

For Uh E 0'(t and Lh as defined above, partial summation yields 

(4.8) IUh IH1 = (LhUh Uh) h/) Uh IH?- 

(Note that Lh is a symmetric, positive definite operator.) A discrete H2-norm will be 

introduced later in this section. For the norm of an operator Ah: &ho h we 

adopt the notation 

(4.) lA supt SU AhUhlBs 

0* Uh E= I AUhlHs 

By virtue of the following lemma, the estimate (4.2) carries over to an estimate 

relative to I * 11ll: 

LEMMA 4.2. 
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Proof. (4.8) is equivalent to IL-111 = 1. Hence it follows from (4.2) that 

|h-lBh|11 |h 1 llh -1,1 

= |L-112Bh /loo= LL2BhL2lBh) 

< |L-hlBhL-hlBh || o c | LhlBh ||00 (h 2 

We shall need the following estimates for the projection operator Rh: qi, ' ih,. 

LEMMA 4.3. We have 

(4.11a) JR h I1l,1 -< r- 

If Q is convex, 

(4.11b) Rh 11,1 -< r2 

Proof. (a) is established by the estimate 

| Rh |1 1 -| Llh72RhL 172 lo = P (RhLhRhLh) 

1 ||Rh || 
c 

|| Lh RhLh || X < 1 + || Lh BhLh X 

It is easy to see that IIBhLhI oo < 6h-2. Hence, 

Rh |1,1 < (1 + h26h-2)l/2= - 

follows from Proposition 4.1. 
For convex Q, the sharper bound (b) can be derived via direct estimates of the 

scalar products KaxRhUh, axRhUh) and KayRhUh, ayRhUh). See [2] for details. O 
Let ALh refer to the application of the Mehrstellenoperator (3.2) in every point of 

the infinite grid, irrespective of the boundary condition. In other words, 

h 2 
(4.12) ALh : 6 xax-ay - 

Clearly, ALh = Rh2iLh- 

LEMMA 4.4. We have 

(4.13) |IXLh 1-11 3 independent of h. 

Proof. We consider the scalar product KALhUh, Vh) and apply partial summation: 

KiLhUh, Vh) | [ KyXaXyaYu h vh) + KaxaxayaYu, vh) |] 

= K2 [ } ( ayaxayuh, aXvh)V + Kaxaxayuhl ayv) J 
12 | axayUh |ffl I Vh I Hi < - I Uh IH' I Vh I H' 

where we have used the Cauchy-Schwarz inequality and crude estimation of 

IaxayUh Hl. Hence, 

IA2LhUh IH1 = Sup IAhUh Vh) | 1 U H1 
10 * Vh E=&h 

I VhZ IH 
3r 
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THEOREM 4.5. With respect to 11,1, Lj1ALh is a contraction: 

(4 .14a) |Lh-1ALh 82 
If Q is convex, 

(4.14b) |Lh-1ALh .472. 
Proof. By (4.8), 

I L-1/ALhUh IHi < JALUh IH-1 = RhALhUh IH-1 

| ( ALh Uh, RhVh) I I ALhUh IH-1I RhVh 
IH1 = sup < sup 

IVh IH1 O*Vh E' Ih Vh IH 

< | Rh11 I jALh -1h1IUh IH1 
The result follows from Lemmas 4.3 and 4.4. z 

The analysis of the modified iteration (2.12) will require stronger properties of Lh 
than used so far. We define ax, ayy: T T by 

(4.15) axxUh(P)= {8:axUh(P)' p Ch, 

and similarly for ayy. We introduce a discrete H2-seminorm on TO: 

(4.16) |UhIH2:= I aXXUh I Ho + I aYyUh I HoI. 

In the following theorem we present a quantitative discrete H2-regularity estimate. 

THEOREM 4.6. Discrete H2-regularity. If S2 is convex, 

(4.17) |UhIH2 < I LhUh IHO 
holds independently of h for all Uh E h- 

Proof. Let Uh e T . Since Lh = -(ax + ayy) 

I =H2 K(axxUh axxUh) + ( ayyUh, ayyUh) 

= (Lhuh LhUh)- 2(axxUh, ayyUh) 

=ILhUh 
12 

- 2KaXaXUh,aYYUh)- 

Now, 

(4.18) KaxaXUh, aYYUh) = h h axaxU h,YayUh) + ( axaXuh (ayy - 
ayaY) Uh) 8 

axayuh, aXayuh) - KXaXUh, chyaAYh) 

The first part is > 0, as required. In the second part, Ch denotes restriction to the 
boundary points (because these are the only points where, in general, ayyuh(p) # 

ayayUh(p) for Uh E TO). We shall now investigate 

Yh(P):= XaXUh(P)-yayuh(P) 

forallP Eah 
(a) P lies on a horizontal or vertical grid line, but is not a corner point. Then 

Yh(P) = 0, since aXaxuh(p) = 0 or aya^(P) = O. 
(b) P is a corner point, the corner being not reentrant. Then again Yh(P) = 0, 

since either jaxuh(p) = 0 or ayaYUh(P) = 0. 
(a) and (b) imply H2-regularity for rectangles. 
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gP \Peag2h 

L<~PY 
y 

FIGupRE 4.2 

Boundary point on diagonal grid line 

(c) P lies on a diagonal grid line and is not a corner point. One of the possible 
situations is shown in Figure 4.2. Let Px:= P - hex, Py:= P - hey. Clearly, 
aXaXUh(P) = h-2uh(Px)andaYaYu^(P) = h h2u(PY).Theinequalityab < '(a2 ? b2) 

yields 

Yh (p) < 2 [(h uh(Px))2 + (h uh(Py))2I 

Since Uh E q4, we have 

h2 Uh(Px) j=aXayuh(Px) |, h2 Uh (Py) = axayUh (Py) 

Similar conclusions hold for all other cases in question. 
Since (a), (b) and (c) characterize arbitrary convex domains of the type under 

consideration, we have shown that, for convex S2, 

Kaxauh, chayayuh) U E 
YhCp)I 

PE a&2h 

- < 2 r(axayUh(Px))2 +(axayuh(py))2] 
2E a&2h 

where it is sufficient to cover the points of type (c). It is obvious that, for h not too 
large, the latter sum is bounded by (axayUh, axayUh), since no point Px, Py will 
appear more than twice. Hence it follows from (4.18) that 

KaxaXUhIayyuh) > o. 
This establishes H2-regularity in the convex case. El 

We shall from now on assume that S2 is convex. Theorem 4.6 enables us to 
establish a strengthened estimate for L'1ALh. 

LEMMA 4.7. 

(4.19) |Lh-AL LhL-' 1,o < .236h . 

Proof. By (4.8) and Theorem 4.6 it suffices to show that 

(4.20) |IALh h IH-1 < .236hI UhIH2, Uh Eh 

Let vh E qO& . Then, 

I(ALhUh, Vh)l = I(ALhUh, RhVh)l 

= B K[(axaxuh, ayay Rhvh) + K(yayUh, xaxRhVh) I 

= [B KaxxUh ayayRhvh) + (ayyuh aaxRv) R h h 
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because the definition of Rh implies that for any P E 8A2h either axa.uh(P) or 
ayayRhvh(P) vanishes (similarly for the pair ayay, aaRh). Further partial summation 
and application of the Cauchy-Schwarz inequality yield 

I(LhUh, Vh) 12 [(ayaXxUh ayRhVh) I + axayyuh, aXRhvh)II 

< 2 4IayaxxUhH +I axaYyUhI Ho I Rh 1,1 Vh IH 

Hence, IALhuhIH-1 is bounded by 

h 2r2\2 2]172 2 F2 
I ALhUhI H-1 < 12 -) luhIH2] 

v = 12 hi Uh IH2 < .236hI Uh IH2 

by (4.11b) and crude estimates for ax, ay O 
Consider now the modified defect correction iteration (2.12) involving a smooth- 

ing operator Sh as described in Section 3. For Sh, the following smoothing property 
is required: 

(4.21) 1LhShP1, ll<1 C(v)h-1 

with C(v) O- as Pv- oo. 

PROPOSITION 4.8. Let Sh satisfy (4.21). Then, 

(4.22) |Lh ALh |1 <- 0.24C(v)- 

Proof. Apply Lemma 4.7. 5 
It follows from a result in Hackbusch [9, Section 3.3] that (4.21) is satisfied for 

Jacobi relaxation (with damping factor 2) with 

(4.23a) C(v) < 2V 
r4 P- ~1 

We also have 

PROPOSITION 4.9. For Gauss/Seidel relaxation with red-black ordering, (4.21) is 
satisfied with 

(4.23b) C(v) 2< 2 
3 F3VF3 

Proof. See [2]. 5 
We summarize as follows. 

COROLLARY 4.10. For convex 0, 

| h 1 h I 1, l < .7 
by Theorem 4.5. IL-'AL Sa'l,l is bounded by the numbers given in the following table: 

P | Jacobi Gauss/Seidel 

1 .386 .349 
2 .253 .247 

3 .202 .202 
4 .173 .175 
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Our bounds are rigorous but certainly not optimal (cf. the model problem analysis 
in Section 3). The reason for this is that (4.19) as well as (4.21) are somewhat weaker 
than the corresponding estimates from Section 3. One of the open questions is 
whether something like IL-1ALhL-'1l, 1 < Ch2 is satisfied. 

Since our bounds are valid only in H1, the investigation of the "fixed point shift" 
becomes more difficult than in Section 3. In particular, we get the following 
nonoptimal result. We note, in this connection, that Lemma 3.4 (applied to - lo) 
carries over to the present case without modification. 

Let Dh: t'2 -*h ?' be defined by 

(4.24) Dh:= R + h2B. 

PROPOSITION 4.11. Let IL-'ALhSh11, 1 < m < 1 (cf. Corollary 4.10). There exist 
constants C1, C2 independent of h such that the error eh of Proposition 2.2 satisfies 

(4.25) Ieh IHl hH 1 - m [o1 Dh(Lhuh -f4) H? + C2C'(v)h 2Lhuh fh |H? 

(with C'(v) from Lemma 3.4). Thus, IehIlW = 0(h3). 

Proof. By construction, the truncation error of the target discretization is 0(h4) in 
the interior points of P E oh and 0(h2) for P E rh. Therefore, 

Dh (L'u* -f f) IHo < Ch4. 

By (4.10), IL- 1DK1I11 < C. Hence it follows from Lemmas 3.4 and 4.7 that 

11 [L- DK IHl Ih IH1 _ m Fi11i Dh(LhU -fh) H1 
+ h LhLL 11h01 Lh lo,ol Th Io,ol LhUh 

- 
fh H?] 

- ( [Clh-1IDh(L'u* - fh) IHo + .236hCh-2C'(v)h2h2] 

0 (h 3). C1 

We have shown 0(h3) for IehIHo and for laXehlHH0' layehlH0 It is easy to see that 
0(h4) follows if the truncation errors can be measured in H1 rather than Ho 
without loss of order. If u* is sufficiently smooth, this can be expected in an 
"interior sense", but not up to the boundary. 

On the other hand, estimates for IL-`'ALh seem to be very hard to obtain. In 
particular, numerical experience tells us that IL-'A/Lh o < 1 cannot be expected in 
general. We have found an example where IL-'AL^Loo> 1, even though Q is convex 
(cf. [1]). (In contrast to this, JAL L-11o,o < 1 can easily be derived from Theorem 
4.6.) 

5. General Domains; Concluding Remarks. On the basis of the work of Hackbusch 
[8], [11], much of the reasoning from Section 4 can (at least qualitatively) be 
extended to the case of (1.1) in a domain 2 with curved boundary. The remarks 
below contain a summary of our analysis for general domains, which can be found 
in [2]. 

Suitable (basic and target) discretizations of (1.1) involve special difference 
formulae for "irregular" points near the boundary (see [2] for details). For the usual 
"Shortley-Weller"-operator Lh, Proposition 4.1 remains valid without modification 
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(cf. [6]). The discrete regularity properties of the Shortley-Weller scheme have been 
studied by Hackbusch [11] (see also [1]). For discrete H1- and H2-norms ap- 
propriately defined, the following estimates hold independently of the mesh size h: 

(5.1) IL-' 1.02 

is valid under very weak assumptions on 02, whereas 

(5.2) IL-' 12,0 < C 
is only true if the boundary au is sufficiently smooth. At present, the constant in 
(5.2) is not explicitly known. 

Using (5.1), (5.2) and analogues of Lemmas 4.2-4.4, it is shown in [2] that 

IL/ILh- 1 is 0(1). A further result is 

(5.3) IL-'1LhL-h1Ilel- = 0(h6), 0 < 0 <2, 
where I He is a discrete Sobolev norm of noninteger order. Combining (5.3) with a 
generalized smoothing property, which is proved in Hackbusch [8] for Jacobi and 
Gauss/Seidel smoothers Sh, we obtain 

(5-4) IL-'ALh |11 1 -<- C(v), 

where C(v) -O 0 for v - oo. Thus, the defect correction is contractive if a sufficient 
(h-independent) number of smoothing sweeps are performed. 

The defect correction algorithm described in this paper has been implemented on 
the basis of the standard multigrid solver MGO1 for Helmholtz's equation (cf. 
Stuben and Trottenberg [13]). A detailed description is given in [3]. Numerical 
experiences are reported in [1] and [3]. 

Our final remark deals with the question of stability of the target discretization. 
On the one hand, stability of L'h is a direct consequence of p(L-h7/Lh) < 1, 
independently of h (cf. Sections 3 and 4). However, Proposition 2.2 shows how, in 
principle, error smoothing may help when using an unstable L'. This could be of 
particular interest for such types of problems where high-order schemes inevitably 
are unstable (nonelliptic or singularly perturbed problems as, e.g., the convection 
diffusion equation). Future work will be concerned with this subject. 
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